首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   17篇
  国内免费   3篇
化学   1篇
综合类   3篇
数学   116篇
  2023年   2篇
  2022年   3篇
  2021年   1篇
  2020年   4篇
  2019年   6篇
  2018年   8篇
  2017年   8篇
  2016年   6篇
  2015年   2篇
  2014年   2篇
  2013年   3篇
  2012年   3篇
  2011年   4篇
  2010年   11篇
  2009年   9篇
  2008年   3篇
  2007年   4篇
  2006年   10篇
  2005年   4篇
  2004年   4篇
  2003年   5篇
  2002年   3篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1986年   1篇
排序方式: 共有120条查询结果,搜索用时 22 毫秒
1.
The central observation of this paper is that if εn random arcs are added to any n‐node strongly connected digraph with bounded degree then the resulting graph has diameter 𝒪(lnn) with high probability. We apply this to smoothed analysis of algorithms and property testing. Smoothed Analysis: Recognizing strongly connected digraphs is a basic computational task in graph theory. Even for digraphs with bounded degree, it is NL‐complete. By XORing an arbitrary bounded degree digraph with a sparse random digraph R ∼ 𝔻n,ε/n we obtain a “smoothed” instance. We show that, with high probability, a log‐space algorithm will correctly determine if a smoothed instance is strongly connected. We also show that if NL ⫅̸ almost‐L then no heuristic can recognize similarly perturbed instances of (s,t)‐connectivity. Property Testing: A digraph is called k‐linked if, for every choice of 2k distinct vertices s1,…,sk,t1,…,tk, the graph contains k vertex disjoint paths joining sr to tr for r = 1,…,k. Recognizing k‐linked digraphs is NP‐complete for k ≥ 2. We describe a polynomial time algorithm for bounded degree digraphs, which accepts k‐linked graphs with high probability, and rejects all graphs that are at least εn arcs away from being k‐linked. © 2007 Wiley Periodicals, Inc. Random Struct. Alg., 2007  相似文献   
2.
We discuss the length of the longest directed cycle in the sparse random digraph , constant. We show that for large there exists a function such that a.s. The function where is a polynomial in . We are only able to explicitly give the values , although we could in principle compute any .  相似文献   
3.
We prove part of a conjecture by Johansson, Kahn, and Vu (Factors in random graphs, Random Struct. Algorithms 33 (2008), 1, 1–28.) regarding threshold functions for the existence of an H‐factor in a random graph . We prove that the conjectured threshold function is correct for any graph H which is not covered by its densest subgraphs. We also demonstrate that the main result of Johansson, Kahn, and Vu (Factors in random graphs, Random Struct. Algorithms 33 (2008), 1, 1–28) generalizes to multigraphs, digraphs, and a multipartite model.  相似文献   
4.
It is well known that Moore digraphs do not exist except for trivial cases (degree 1 or diameter 1), but there are digraphs of diameter two and arbitrary degree which miss the Moore bound by one. No examples of such digraphs of diameter at least three are known, although several necessary conditions for their existence have been obtained. In this paper, we prove that digraphs of degree three and diameter k ≥ 3 which miss the Moore bound by one do not exist. © 2004 Wiley Periodicals, Inc. J Graph Theory 48: 112–126, 2005  相似文献   
5.
In the paper two different arc-colourings and two associated with the total colourings of digraphs are considered. In one of these colourings we show that the problem of calculating the total chromatic index reduces to that of calculating the chromatic number of the underlying graph. In the other colouring we find the total chromatic indices of complete symmetric digraphs and tournaments.  相似文献   
6.
Analterable digraph is a digraph with a subset of its edges marked alterable and their orientations left undecided. We say that an alterable digraph has an invariant ofk on the length of the longest circuit if it has a circuit of length at leastk regardless of the orientations over its alterable edges. Computing the maximum invariant on the length of the longest circuit in an alterable digraph is aglobal optimization problem. We show that it is hard to approximate the global optimal solution for the maximum invariant problem.Research supported in part by NSF grant CCR 9121472.  相似文献   
7.
An n‐state deterministic finite automaton over a k‐letter alphabet can be seen as a digraph with n vertices which all have k labeled out‐arcs. Grusho (Publ Math Inst Hungarian Acad Sci 5 (1960), 17–61). proved that whp in a random k‐out digraph there is a strongly connected component of linear size, i.e., a giant, and derived a central limit theorem. We show that whp the part outside the giant contains at most a few short cycles and mostly consists of tree‐like structures, and present a new proof of Grusho's theorem. Among other things, we pinpoint the phase transition for strong connectivity. © 2016 Wiley Periodicals, Inc. Random Struct. Alg., 51, 428–458, 2017  相似文献   
8.
9.
The k‐linkage problem is as follows: given a digraph and a collection of k terminal pairs such that all these vertices are distinct; decide whether D has a collection of vertex disjoint paths such that is from to for . A digraph is k‐linked if it has a k‐linkage for every choice of 2k distinct vertices and every choice of k pairs as above. The k‐linkage problem is NP‐complete already for [11] and there exists no function such that every ‐strong digraph has a k‐linkage for every choice of 2k distinct vertices of D [17]. Recently, Chudnovsky et al. [9] gave a polynomial algorithm for the k‐linkage problem for any fixed k in (a generalization of) semicomplete multipartite digraphs. In this article, we use their result as well as the classical polynomial algorithm for the case of acyclic digraphs by Fortune et al. [11] to develop polynomial algorithms for the k‐linkage problem in locally semicomplete digraphs and several classes of decomposable digraphs, including quasi‐transitive digraphs and directed cographs. We also prove that the necessary condition of being ‐strong is also sufficient for round‐decomposable digraphs to be k‐linked, obtaining thus a best possible bound that improves a previous one of . Finally we settle a conjecture from [3] by proving that every 5‐strong locally semicomplete digraph is 2‐linked. This bound is also best possible (already for tournaments) [1].  相似文献   
10.
We prove that the strong immersion order is a well-quasi-ordering on the class of semicomplete digraphs, thereby strengthening a result of Chudnovsky and Seymour (2011, J. Comb. Theory, Series B, 101, 47–53) that this holds for the class of tournaments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号